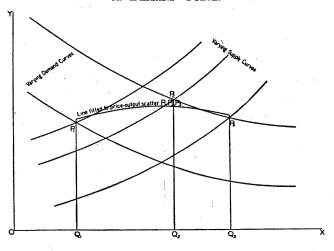
Simultaneous Equations Models

1 All Together Now

- Some types of policy analysis require we know the elasticity (slope) of demand and/or supply. But, which comes first, price or quantity? In equilibrium, the direction of causality is unclear
- A regression of quantity on price gives the best (MMSE) approximation to $E[q_t \mid p_t]$ for equilibrium quantities and prices. The figure below suggests that the regression of quantity on price characterizes neither the supply nor demand function, but rather something in between:

If both supply and demand conditions change, priceoutput data yield no direct information as to either curve. (Figure 4.)

FIGURE 4. PRICE-OUTPUT DATA FAIL TO REVEAL EITHER SUPPLY OR DEMAND CURVE.



- This figure comes from a 1928 study by economist and poet Phillip Wright called *The Tariff on Animal and Vegetable Oils*. Little-noticed at the time, Wright's "Appendix B" laid the intellectual foundations of modern econometrics.
- Wright's problem is not *statistical*. Rather, much as in the story of short and long regressions, the regression we've got is not the one we want. Except that, here, the "regression we want" is not a regression at all, but rather a theoretical economic relationship that describes the counterfactual choices of buyers and sellers.
 - Many economists refer to theoretical relationships of the sort described by supply and demand curves as "structural"
 - Applied econometricians interested in uncovering structural relationships are said to face an identification problem

1.1 Simultaneous Equations Bias

- When prices and quantities are determined by solving two (or more) equations simultaneously, OLS estimates are inconsistent for supply and demand elasticities; this bad behavior is called *simultaneous* equations bias
- As always, we use economic models to understand, simplify, and solve problems. Our problem-solving model here asserts that potential quantities supplied and demanded can be written as a linear function of prices and possibly other variables that we think of as shifting these functions. Specifically, we write:

$$q_t^d(p) = \alpha_0 + \alpha_1 p + \alpha_2 z_t + \epsilon_t^d \tag{1}$$

$$q_t^s(p) = \beta_0 + \beta_1 p + \beta_2 x_t + \epsilon_t^s, \tag{2}$$

where $q_t^d(p)$ is the quantity consumers demand at price p, $q_t^s(p)$ is the quantity producers supply at price p, and z_t and x_t are additional observed determinants of demand and supply (e.g., income, other prices). The market equilibrium p_t solves

$$q_t^d(p_t) = q_t^s(p_t) = q_t \tag{3}$$

- Variables determined jointly by solving the system (in this case by an equilibrium condition) are said to be *endogenous*. Variables like z_t and x_t , determined outside the system, are said to be *exogenous*.
- What do OLS estimates of (1) or (2) produce when the observed p_t and q_t satisfy equations (1)-(3)?
 - First solve for the *reduced form* for p_t by equating supply and demand:

$$p_{t} = \frac{\beta_{0} - \alpha_{0}}{\alpha_{1} - \beta_{1}} - \frac{\alpha_{2}}{\alpha_{1} - \beta_{1}} z_{t} + \frac{\beta_{2}}{\alpha_{1} - \beta_{1}} x_{t} + \frac{\epsilon_{t}^{s} - \epsilon_{t}^{d}}{\alpha_{1} - \beta_{1}}$$

$$= \pi_{10} + \pi_{11} z_{t} + \pi_{12} x_{t} + \nu_{1t}$$

$$(4)$$

Note that the random part of p_t – the error term ν_{1t} – is surely correlated with both structural errors

- Moral: The supply and demand equations in a simultaneous equations model are not regressions; OLS
 does not reliably estimate them
- Old-school SEMs are not much seen in modern empirical work, but Wright's analysis of the SEM is of
 enormous intellectual importance. The SEM remains the foundation upon which the modern 'metrics
 house is built. Encountering Wright's elegant framework as a college sophomore in 1980, I was floored.

2 The Structure and the Reduced Form: Identification

• The reduced form for p_t is (4). The reduced form for q_t is shown below:

$$q_t = \frac{\beta_1 \alpha_0 - \alpha_1 \beta_0}{\beta_1 - \alpha_1} + \frac{\alpha_2 \beta_1}{\beta_1 - \alpha_1} z_t - \frac{\alpha_1 \beta_2}{\beta_1 - \alpha_1} x_t + \frac{\beta_1 \epsilon_t^s - \alpha_1 \epsilon_t^d}{\beta_1 - \alpha_1}$$

$$= \pi_{20} + \pi_{21} z_t + \pi_{22} x_t + \nu_{2t}$$
(5)

• Reduced form equations are regressions: their errors are uncorrelated with RHS variables. This is because regressors in the reduced form $(x_t \text{ and } z_t)$ are assumed to be uncorrelated with the structural errors. In general, reduced form equations—one for each endogenous variable—are found by solving for all endogenous variables as a function of the exogenous variables in the system

- When is an SEM identified? When the structural coefficients can be obtained from the reduced form.
 - You can easily solve for the structural coefficients in the case of equations (4) and (5); try this and see
 - But ponder this riff on (1) and (2):

$$q_t^d(p) = \alpha_0 + \alpha_1 p + \alpha_2 z_t + \alpha_3 x_t + \epsilon_t^d \tag{6}$$

$$q_t^s(p) = \beta_0 + \beta_1 p + \beta_2 z_t + \beta_3 x_t + \epsilon_t^s \tag{7}$$

This system is *under-identified*, knowledge of the reduced form does not reveal the structure (show this too)

• Identification in the SEM requires *exclusion restrictions*; verily, identification requires instruments! (as we will soon see)

• Heads-up on the lingo:

- The term reduced form, which we've been using since Day One, originates in early formal analyses
 of the SEM
- In an SEM context, the reduced form for price is also the first stage for price when we do 2SLS for a demand or supply equation. In the SEM, there's a reduced for for each endogenous variable, including the endogenous variables found on the right-hand side.

Structural vs Reduced-Form Policy Analysis

- Structural equations are models for potential outcomes: they tell us what would happen under alternative random assignments of right-hand-side variables. Read all about it in Angrist, Graddy, and Imbens (2000).
- As we've seen, some policy questions can be tackled directly: Card and Krueger (1994) estimate minimum wage effects without benefit of a structural model. Theirs is sometimes said to be a "reduced form policy analysis" because we can think of the minimum wage as an implicit instrument for the price of labor.
- Supply and demand elasticities are often of intrinsic interest, however, as in the Graddy (1995) study of price discrimination. Do Asians pay less for fish because their demand for fish is more elastic? We require structural demand elasticities to see.
- Some reduced-form questions require extrapolation beyond the data at hand. Consider for example, the possible consequences of a heretofore-unseen \$20 minimum wage. Structural parameters can be used to predict the consequences of this.

3 Estimating Simultaneous Equations Models

- OLS on the structural equations doesn't work. What does?
- Indirect least squares (ILS), instrumental variables (IV), and two-stage least squares (2SLS)

3.1 Indirect Least Squares

- We consistently estimate reduced form coefficients (the π 's, above) by OLS because reduced form errors are uncorrelated with exogenous variables
- Indirect least squares (ILS) solves for the structural coefficients from the reduced form estimates ... if the model is identified. Using (4) and (5), we find:

$$\pi_{11} = \frac{-\alpha_2}{\beta_1 - \alpha_1}$$

$$\pi_{21} = \frac{-\beta_1 \alpha_2}{\beta_1 - \alpha_1}$$

$$\pi_{12} = \frac{\beta_2}{\beta_1 - \alpha_1}$$

$$\pi_{22} = \frac{\beta_2 \alpha_1}{\beta_1 - \alpha_1},$$

so that

$$\frac{\pi_{21}}{\pi_{11}} = \beta_1 \qquad \qquad \frac{\pi_{22}}{\pi_{12}} = \alpha_1$$

We can also solve for the structural coefficients on exogenous variables as:

$$-\pi_{12}(\beta_1 - \alpha_1) = \beta_2 \qquad -\pi_{11}(\beta_1 - \alpha_1) = \alpha_2$$

- Substituting sample analogs for population π 's in the above formulas, the resulting structural coefficient estimates are ILS estimates.
 - ILS estimates of structural parameters are consistent (why?)

3.2 Two-Stage Least Squares (2SLS) ... Again

- 2SLS logic: substitute first stage fitted values for RHS endogenous variables
 - Consider a simple system with one exogenous variable

$$q_t^d = \alpha_0 + \alpha_1 p_t + \epsilon_t^d \tag{8}$$

$$q_t^s = \beta_0 + \beta_1 p_t + \beta_2 x_t + \epsilon_t^s \tag{9}$$

The reduced form for price is

$$p_{t} = \frac{\beta_{0} - \alpha_{0}}{\alpha_{1} - \beta_{1}} + \frac{\beta_{2}}{\alpha_{1} - \beta_{1}} x_{t} + \frac{\epsilon_{t}^{s} - \epsilon_{t}^{d}}{\alpha_{1} - \beta_{1}}$$

$$= \pi_{10} + \pi_{11} x_{t} + \nu_{1t}$$
(10)

• Use equation (8) to write

$$q_t = \alpha_0 + \alpha_1 \hat{p}_t + [\epsilon_t^d + (p_t - \hat{p}_t)\alpha_1], \tag{11}$$

where

$$\hat{p_t} = \hat{\pi}_{10} + \hat{\pi}_{11} x_t$$

- Note that \hat{p}_t is a linear function of x_t , which is uncorrelated with ϵ_t^d . Also, \hat{p}_t is necessarily uncorrelated with $(p_t \hat{p}_t)$. Thus, OLS estimates of α_1 in (11) are consistent
 - OLS regression on fitted values from a first stage is the $\it 2SLS$ $\it second$ $\it stage$
- In a simple model with one instrument and one endogenous variables, like (11), 2SLS estimates are identical to the corresponding ILS and IV estimates

3.3 Over-Identified Models

• Up your game by adding an extra instrument to supply:

$$q_t^d(p) = \alpha_0 + \alpha_1 p_t + \epsilon_t^d \tag{12}$$

$$q_t^s(p) = \beta_0 + \beta_1 p_t + \beta_2 x_t + \beta_3 z_t + \epsilon_t^s \tag{13}$$

The demand equation is now *over-identified*, meaning we have more than one ILS solution for the identified demand slope, α_1 , and more than one instrument available for IV and 2SLS estimation

- To see this, note that the reduced forms for this system are

$$p_{t} = \frac{\beta_{0} - \alpha_{0}}{\alpha_{1} - \beta_{1}} + \frac{\beta_{2}}{\alpha_{1} - \beta_{1}} x_{t} + \frac{\beta_{3}}{\alpha_{1} - \beta_{1}} z_{t} - \frac{\epsilon_{t}^{s} - \epsilon_{t}^{d}}{\alpha_{1} - \beta_{1}}$$

$$= \pi_{10} + \pi_{11} x_{t} + \pi_{12} z_{t} + \nu_{1t}$$

$$q_{t} = \frac{\beta_{1} \alpha_{0} - \alpha_{1} \beta_{0}}{\beta_{1} - \alpha_{1}} - \frac{\alpha_{1} \beta_{2}}{\beta_{1} - \alpha_{1}} x_{t} - \frac{\alpha_{1} \beta_{3}}{\beta_{1} - \alpha_{1}} z_{t} + \frac{\beta_{1} \epsilon_{t}^{s} - \alpha_{1} \epsilon_{t}^{d}}{\beta_{1} - \alpha_{1}}$$

$$= \pi_{20} + \pi_{21} x_{t} + \pi_{22} z_{t} + \nu_{2t}$$

These reduced forms generate two solutions for α_1 :

$$\alpha_1 = \frac{\pi_{21}}{\pi_{11}} \text{ or } \alpha_1 = \frac{\pi_{22}}{\pi_{12}}$$

• We also have two instruments available to estimate the demand slope:

$$\alpha_1 = \frac{\pi_{21}}{\pi_{11}} = \frac{C(q_t, x_t)}{C(p_t, x_t)} = \frac{\pi_{22}}{\pi_{12}} = \frac{C(q_t, z_t)}{C(p_t, z_t)}$$

- 2SLS is an efficient way to combine these:
 - First, compute

$$p_t = \pi_{10} + \pi_{11}x_t + \pi_{12}z_t + \nu_{1t}$$
$$\hat{p_t} = \hat{\pi}_{10} + \hat{\pi}_{11}x_t + \hat{\pi}_{12}z_t$$

using OLS

- The 2SLS estimate of α_1 is then the sample analog of

$$\frac{C(q_t,\,\hat{p}_t)}{C(p_t,\,\hat{p}_t)} = IV \text{ using } \hat{p}_t \text{ as an instrument } = \frac{C(q_t,\,\hat{p}_t)}{V(\hat{p}_t)} = OLS \text{ slope for } q_t \text{ on } \hat{p}_t$$

- Note that \hat{p}_t is a linear combination of the two instruments, x_t and z_t
 - In fact, 2SLS is the efficient IV estimator for a homoscedastic over-identified model. That is, the
 first-stage fitted value is the best single instrument constructed from linear combos of the multiple
 instruments at hand.
- This rule is unchanged: in practice, when doing the SEM, we do 2SLS!
 - 2SLS estimates of over-identified models are statistically efficient, but 2SLS estimates of an under-identified models do not exist; test your SEM understanding by showing this second point

4 Something Fishy at the Fulton Fish Market

• Graddy, (1995) and Angrist, Imbens, Graddy (1995) estimate the elasticity of demand for fish using this model

$$q_t^d(p_t) = \alpha_0 + \alpha_1 p_t + \alpha_2 x_t + \epsilon_t^d \tag{14}$$

$$q_t^s(p_t) = \beta_0 + \beta_1 p_t + \beta_2 x_t + \beta_3 z_t + \epsilon_t^s$$

$$q_t^d = q_t^s = q_t$$
(15)

• Price reduced form:

$$p_t = \pi_{10} + \pi_{11}x_t + \pi_{12}z_t + \nu_{1t}$$

where

 q_t =daily quantity demanded from a dealer at Fulton

 p_t =average daily price

 x_t =vector of day-of-the-week dummies

 z_t =vector of measures of weather conditions at sea (wind speed and wave height)

- Annoying details
 - 1. Data available for only one dealer
 - 2. No information available on prices of substitute goods

. sum

Max	Min	Std. Dev.	Mean	0bs	Variable
1.928571 1.708333 9120 6800	.2666667 .25 110 60	.3518089 .3351612 1904.363 1199.444 .3907764	.8198457 .8919645 2589.763 1537.454 .185567	97 97 97 97	price_a price_w qty_a qty_w day1
1 1 1 25 12.5	0 0 0 5 2.5	.3989354 .4066669 .4066669 3.944879 1.787296	.1958763 .2061856 .2061856 11.97938 5.092784	97 97 97 97	day2 day3 day4 speed2 wave2
45 12.5 1.775487 10940	10 3 .2902674 170	6.524389 1.914742 .344057 2620.681	20.92784 5.020619 .8473869 4127.216	97 97 97 97	speed3 wave3 avgprice totalqty

- . gen mixed3=(1-stormy3)*(speed3>15)*(wave3>3)
- gen stormy2=(speed2>12)*(wave2>5.5)
- . gen mixed2=(1-stormy2)*(speed2>10)*(wave2>3)
- . // OLS and reduced form estimates
- . reg lnqty day1 day2 day3 day4 lnprice

Source	SS	df		MS		Number of obs F(5. 91)		97 5.04
Model Residual	12.1722085 43.960225	5 91		344417 079395		Prob > F R-squared Adj R-squared	= =	0.0004 0.2168 0.1738
Total	56.1324335	96	.584	712849		Root MSE	=	.69504
lnqty	Coef.	Std.	 Err.	t	P> t	[95% Conf.	In	terval]
day1 day2 day3 day4 lnprice _cons	3109272 6827901 5338939 .0672273 5246553 8.244317	.2258 .222 .2199 .2204 .1761	667 374 205 115	-1.38 -3.07 -2.43 0.30 -2.98 50.64	0.172 0.003 0.017 0.761 0.004 0.000	7594975 -1.125091 9707725 370611 8744792 7.920909	 	1376431 2404896 0970152 5050656 1748314

. reg lnqty day1 day2 day3 day4 speed3

Source		df	MS	Number of obs	
Model		_	2.33020008 .488806957	Prob > F R-squared	= 0.0006 = 0.2076
Total	56.1324335	96	.584712849	Adj R-squared Root MSE	
1				 	

lnqty	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
day1	2669628	.2278686	-1.17	0.244	7195958	.1856702
day2	5323006	.2301553	-2.31	0.023	9894759	0751253
day3	4803295	.2228455	-2.16	0.034	9229846	0376743
day4	.0049691	.2211368	0.02	0.982	434292	.4442301
speed3	0316299	.0113951	-2.78	0.007	0542647	008995
_cons	8.999321	.269828	33.35	0.000	8.463341	9.535302

. reg lnprice day1 day2 day3 day4 speed3

	Source	SS	df	MS	Number of obs =	97
-	+ Model	1.6717106	5	.33434212	F(5, 91) = Prob > F =	2.17 0.0646
	Residual	14.0413996	91	.154301095		0.1064
-	+				Adj R-squared =	0.05/3

7	「otal	15.7131102	96 .16	3678231		Root MSE	= .39281
lnp	orice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	day1 day2 day3 day4 peed3 _cons	020083 1004775 0038505 .1026251 .0201874 66551257	.1280266 .1293114 .1252044 .1242444 .0064022 .1516013	-0.16 -0.78 -0.03 0.83 3.15 -4.39	0.876 0.439 0.976 0.411 0.002 0.000	2743922 3573387 2525537 1441711 .0074701 966263	.2342262 .1563837 .2448527 .3494214 .0329046 3639884

- . predict phat1, xb
- . reg lnqty day1 day2 day3 day4 mixed3 stormy3

Source	SS	df		MS		Number of obs F(6, 90)		97 4.31
Model Residual	12.5323209 43.6001126	6 90		872015 445695		Prob > F R-squared Adj R-squared	= =	0.0007 0.2233 0.1715
Total	56.1324335	96	.584	712849		Root MSE	=	.69602
lnqty	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
day1 day2 day3 day4 mixed3 stormy3 _cons	3171298 6655481 5577861 0345707 2615067 5222825 8.650079	.229 .2230 .2206 .221 .1778 .1686	281 741 351 435 905	-1.38 -2.98 -2.53 -0.16 -1.47 -3.10 48.21	0.170 0.004 0.013 0.876 0.145 0.003 0.000	7729603 -1.108632 9961936 4743231 6148239 8574155 8.293585	 	1387007 2224639 1193785 4051817 0918104 1871494 .006573

. reg lnprice day1 day2 day3 day4 mixed3 stormy3

Source	SS	df		MS		Number of obs F(6. 90)		97 3.36
Model Residual	2.87271871 12.8403915	6 90		3786451 2671017		Prob > F R-squared Adj R-squared	= =	0.0050 0.1828 0.1283
Total	15.7131102	96	.163	3678231		Root MSE	=	.37772
lnprice	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
day1 day2 day3	0094215 0177709 .0368483	.1245 .1210 .1197	333	-0.08 -0.15 0.31	0.940 0.884 0.759	2567924 2582247 2010675		2379495 2226828 2747642
day4 mixed3 stormy3	.1245099 .2812021 .3871992	.1201 .0965 .0915	125 453	1.04 2.91 4.23	0.303 0.005 0.000	1141358 .0894632 .2053286		3631555 4729409 5690699
cons	4866297	.0973	803	-5.00	0.000	6800926		2931668

- . predict phat2, xb
- . // 2nd-stage estimates -- speed as instrument
- . reg lnqty phat1 day1 day2 day3 day4

_	Number of obs F(5, 91)		MS		df	SS	Source
= 0.0006 = 0.2076	Prob > F R-squared Adj R-squared		3020007 8806957		5 91	11.6510004 44.4814331	Model Residual
= .69915	Root MSE		4712849	. 58	96	56.1324335	Total
Interval]	[95% Conf.	P> t	t	Err.	Std.	 Coef.	lnqty
445575 .1529731	-2.688055 7498314	0.007 0.192	-2.78 -1.31	 4648 7249	.564 .22	-1.566815 2984291	phat1 day1

9731
7589
2274
5459
5212
1

- . // 2nd-stage estimates -- mixed3 and stormy3 as instruments
- . reg lnqty phat2 day1 day2 day3 day4

	Source	SS	df	MS	Number of obs =	97
	+- Model	12.2836698	 5	2.45673397	F(5, 91) = Prob > F =	5.10 0.0004
F	Residual	43.8487636	91	.481854546	R-squared =	
	Total	56.1324335	96	.584712849	Adj R-squared = Root MSE =	

lnqty	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
phat2	-1.268173	.419728	-3.02	0.003	-2.101911	4344354
day1	3020106	.2255832	-1.34	0.184	7501038	.1460826
day2	6877415	.222399	-3.09	0.003	-1.12951	2459732
day3	499983	.220345	-2.27	0.026	9376713	0622948
day4	.1375271	.2230704	0.62	0.539	3055748	.5806289
_cons	8.039471	.1935591	41.53	0.000	7.65499	8.423952

^{. //} same estimates using ivreg

9

[.] version 10 // (older versions -- just use "ivreg" in place of "ivregress
2sls
> ")

[.] ivregress 2sls lnqty day1 day2 day3 day4 (lnprice=speed3)

Wald chi2(5) = 18.56 Prob > chi2 = 0.0023 R-squared = . Root MSE = .79221

lnqty	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lnprice	-1.566815	.6395994	-2.45	0.014	-2.820407	3132232
day1	2984291	.2574976	-1.16	0.246	8031152	.2062569
day2	6897303	.2538292	-2.72	0.007	-1.187226	1922342
day3	4863624	.2522112	-1.93	0.054	9806874	.0079625
day4	.1657637	.2577143	0.64	0.520	3393472	.6708745
_cons	7.957192	.2498635	31.85	0.000	7.467469	8.446916

Instrumented: lnprice

Instruments: day1 day2 day3 day4 speed3

. ivregress 2sls lnqty day1 day2 day3 day4 (lnprice=mixed3 stormy3)

Instrumental variables (2SLS) regression

Number of obs = 97 Wald chi2(5) = 22.67 Prob > chi2 = 0.0004 R-squared = 0.0635 Root MSE = .73618

lnqty	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lnprice	-1.268173	.4451392	-2.85	0.004	-2.14063	3957166
day1	3020106	.2392405	-1.26	0.207	7709133	.1668921
day2	6877415	.2358635	-2.92	0.004	-1.150025	2254575
day3	4999831	.2336852	-2.14	0.032	9579976	0419686
day4	.1375271	.2365755	0.58	0.561	3261524	.6012066
_cons	8.039471	.2052776	39.16	0.000	7.637134	8.441808

Instrumented: lnprice

Instruments: day1 day2 day3 day4 mixed3 stormy3

log close

log: /bbkinghome/paul_s/32/stataForLectures/ln18/ln18.log

log type: text

closed on: 28 Apr 2009, 11:47:05

10