Instrumental Variables (IV) and 2SLS for OVB

1 Recap: Regression and the CIA

- Recall the causal regression model for effects of private university attendance $\left(P_{i}\right)$ on wages from previous notes:
- $Y_{0 i}=\alpha+\eta_{i}$, where $E\left[Y_{0 i}\right]=\alpha$; assume $Y_{1 i}-Y_{0 i}=\delta$. This means:

$$
\begin{equation*}
Y_{i}=Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) P_{i}=\alpha+\delta P_{i}+\eta_{i} \tag{1}
\end{equation*}
$$

where δ is a new Greek name for the causal effect of private college attendance

- The CEF of Y_{i} given P_{i} is linear, so the regression of Y_{i} on P_{i} produces a difference in means:

$$
E\left[Y_{i} \mid P_{i}=1\right]-E\left[Y_{i} \mid P_{i}=0\right]=\delta+\left\{E\left[\eta_{i} \mid P_{i}=1\right]-E\left[\eta_{i} \mid P_{i}=0\right]\right\}
$$

- Uncontrolled comparisons equal the causal effect of interest plus selection bias
- Regression captures causal effects by invoking a conditional independence assumption (CIA):

$$
\begin{equation*}
E\left[\eta_{i} \mid P_{i}, X_{i}\right]=E\left[\eta_{i} \mid X_{i}\right]=\gamma^{\prime} X_{i} \tag{2}
\end{equation*}
$$

for a set of observed controls, X_{i}. Equivalently,

$$
\eta_{i}=\gamma^{\prime} X_{i}+u_{i}
$$

where u_{i} and X_{i} are uncorrelated

- In MM Chpt 2, the variables in X_{i} are dummies for Barrons selectivity groups or the average selectivity of colleges applied to
- The CIA yields a causal regression model

$$
\begin{equation*}
Y_{i}=\alpha+\delta P_{i}+\gamma^{\prime} X_{i}+u_{i} \tag{3}
\end{equation*}
$$

that's free of OVB

- Often, however, we're not so lucky in the controls department. Even so, masters know that ...

2 Instrumental Variables Eliminate Selection Bias

2.1 Waiting for Superman

- Many children in large urban districts leave school with poor reading and math skills. This perpetuates poverty and increases inequality.
- Charter schools-privately managed public schools-offer a possible solution
- Charters are funded by the host district, but free to deviate from local district requirements and to opt out of collective bargaining agreements that cover traditional public school teachers
- The Knowledge is Power Program (KIPP) is iconic in the charter universe, serving mostly urban minority students. KIPP's "No Excuses" charter recipe includes a long school day and year, data-driven instruction, TFA and tutoring, and emphasizes discipline and comportment
- KIPP students tend to do better than other students in the district they hail from. But is this selection bias or a causal effect?

Here's what the critics say:
KIPP students, as a group, enter KIPP with substantially higher achievement than the typical achievement of schools from which they came. . . . [T]eachers told us either that they referred students who were more able than their peers, or that the most motivated and educationally sophisticated parents were those likely to take the initiative . . . and enroll in KIPP.

- The Superman selection story
- Let D_{i} denote attendance at KIPP and Y_{i} be an achievement test outcome
- Under constant causal effects,

$$
\begin{equation*}
Y_{i}=Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) D_{i}=\alpha+\lambda D_{i}+\eta_{i} \tag{4}
\end{equation*}
$$

where λ is yet another Greek name for the causal effect of interest. Again, we're confounded by selection bias:

$$
E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=\lambda+\left\{E\left[\eta_{i} \mid D_{i}=1\right]-E\left[\eta_{i} \mid D_{i}=0\right]\right\}
$$

2.2 Defining Instruments

- An instrument $\left(Z_{i}\right)$ for KIPP attendance in (4) is correlated with D_{i} but uncorrelated with $Y_{0 i}$. In the context of equation (4), instrumental variable Z_{i} is assumed to satisfy:

$$
\begin{align*}
& C\left(Z_{i}, D_{i}\right) \neq 0 \tag{5}\\
& C\left(Z_{i}, \eta_{i}\right)=0 \tag{6}
\end{align*}
$$

- These conditions imply

$$
\begin{align*}
C\left(Z_{i}, Y_{i}\right) & =C\left(Z_{i}, D_{i}\right) \lambda_{I V} \tag{7}\\
\lambda_{I V} & =\frac{C\left(Z_{i}, Y_{i}\right)}{C\left(Z_{i}, D_{i}\right)}=\frac{C\left(Z_{i}, Y_{i}\right) / V\left(Z_{i}\right)}{C\left(Z_{i}, D_{i}\right) / V\left(Z_{i}\right)} \tag{8}
\end{align*}
$$

Because we can solve for the causal coefficient of interest from observable moments (in this case, variances and covariances), λ is said to be identified

- Identification problems are distinct from estimation problems
- We put the subscript "IV" on $\lambda_{I V}$ because, as we'll soon see, IV estimators identify a particular type of causal effect
- The IV estimator is a ratio of regression estimates:

$$
\begin{equation*}
\hat{\lambda}_{I V}=\frac{s_{Z Y} / s_{Z}^{2}}{s_{Z D} / s_{Z}^{2}} \tag{9}
\end{equation*}
$$

where $s_{Z Y}$ etc. are sample covariances and variances

- Given assumptions (5) and (6), $\hat{\lambda}_{I V}$ is a consistent (though not unbiased) estimator of λ, with an asymptotically Normal sampling distribution that we derive later
- The top and bottom of the IV ratio, (8), are central to the IV story, so we christen them:

$$
\frac{\text { The Reduced Form }}{\text { The First Stage }}=\frac{C\left(Z_{i}, Y_{i}\right) / V\left(Z_{i}\right)}{C\left(Z_{i}, D_{i}\right) / V\left(Z_{i}\right)}=\frac{\rho}{\phi}=\lambda_{I V}
$$

Sample analogs, denoted $\hat{\rho}$ and $\hat{\phi}$, are called "reduced form estimates" and "first stage estimates"

- Nice work if you can get it!
- Do such miraculous instruments exist?

Pedestrian IV: Long Regression w/o Controls

- Another way to motivate IV: when estimating KIPP effects, we'd like to control for factors like ability and family background
- Denote these by A_{i}. Suppose this is the "long regression" we'd like to run:

$$
\begin{equation*}
Y_{i}=\alpha_{l}+\rho_{l} D_{i}+\gamma^{\prime} A_{i}+e_{i} \tag{10}
\end{equation*}
$$

- Alas, important control variables are unobserved. For example, ability is hard to measure.
- Instrumental Variables (IV) methods allow us to recover the coefficient of interest in a long regression even when long-regression controls are unavailable. In addition to the first stage requirement, condition (5), this formulation requires that Z_{i} be uncorrelated with omitted variables and the residual thats left over. That is, we replace (6) with $C\left(Z_{i}, A_{i}\right)=C\left(Z_{i}, e_{i}\right)=0$ in (10).

2.3 Playing the KIPP Lottery

- Like all Massachusetts charter schools, KIPP Lynn assigns seats by lottery (i.e., at random) when over-subscribed
- A research jackpot!
- In this case, instrument Z_{i} is a dummy variable indicating the set of KIPP applicants randomly offered a KIPP seat
- Because the lottery is how most KIPP applicants get seated there, (5) is satisfied
- Because lottery offers are randomly assigned, they're likely to be independent of potential outcomes, satisfying (6)
- Bernoulli (dummy) instruments generate a useful simplification of (8):

$$
\begin{equation*}
\lambda_{I V}=\frac{C\left(Z_{i}, Y_{i}\right) / V\left(Z_{i}\right)}{C\left(Z_{i}, D_{i}\right) / V\left(Z_{i}\right)}=\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{E\left[D_{i} \mid Z_{i}=1\right]-E\left[D_{i} \mid Z_{i}=0\right]} \tag{11}
\end{equation*}
$$

- We can therefore construct IV estimates using a ratio of differences in means:

$$
\begin{equation*}
\hat{\lambda}_{I V}=\left(\bar{Y}_{1}-\bar{Y}_{0}\right) /\left(\bar{D}_{1}-\bar{D}_{0}\right), \tag{12}
\end{equation*}
$$

where \bar{Y}_{j} and \bar{S}_{j} are sample means of Y_{i} and S_{i} conditional on $Z_{i}=j$

- The formulation in (12) is called a Wald estimator after Wald (1940)

The KIPP First Stage

- For applicants to KIPP Lynn, applying for 5th and 6th grade seats in the years 2005-2008

Figure 3.1
Application and enrollment data from KIPP Lynn lotteries

Note: Numbers of Knowledge Is Power Program (KIPP) applicants are shown in parentheses.

- Lotteries at KIPP Lynn make ceteris into paribus
- The table below describes KIPP's 2005-8 applicants for 5 th and 6 th grade seats; outcomes are from the end of these grades (for the 371 tested lottery applicants; baseline scores are from 4th grade)

Table 3.1
Analysis of KIPP lotteries

	Lynn public fifth graders (1)	KIPP applicants			
		KIPP Lynn lottery winners (2)	Winners vs. losers (3)	Attended KIPP (4)	Attended KIPP vs. others (5)
Panel A. Baseline characteristics					
Hispanic	. 418	. 510	$\begin{gathered} -.058 \\ (.058) \end{gathered}$. 539	$\begin{gathered} .012 \\ (.054) \end{gathered}$
Black	. 173	. 257	$\begin{gathered} .026 \\ (.047) \end{gathered}$. 240	$\begin{gathered} -.001 \\ (.043) \end{gathered}$
Female	. 480	. 494	$\begin{gathered} -.008 \\ (.059) \end{gathered}$. 495	$\begin{aligned} & -.009 \\ & (.055) \end{aligned}$
Free/Reduced price lunch	. 770	. 814	$\begin{gathered} -.032 \\ (.046) \end{gathered}$. 828	$\begin{gathered} .011 \\ (.042) \end{gathered}$
Baseline math score	-. 307	-. 290	$\begin{gathered} .102 \\ (.120) \end{gathered}$	-. 289	$\begin{gathered} .069 \\ (.109) \end{gathered}$
Baseline verbal score	-. 356	$-.386$	$\begin{gathered} .063 \\ (.125) \end{gathered}$	-. 368	$\begin{gathered} .088 \\ (.114) \end{gathered}$
Panel B. Outcomes					
Attended KIPP	. 000	. 787	$\begin{gathered} .741 \\ (.037) \end{gathered}$	1.000	1.000
Math score	-. 363	-. 003	$\begin{gathered} .355 \\ (.115) \end{gathered}$. 095	$\begin{gathered} .467 \\ (.103) \end{gathered}$
Verbal score	-. 417	-. 262	$\begin{gathered} .113 \\ (.122) \end{gathered}$	-. 211	$\begin{gathered} .211 \\ (.109) \end{gathered}$
Sample size	3,964	253	371	204	371

Notes: This table describes baseline characteristics of Lynn fifth graders and reports estimated offer effects for Knowledge Is Power Program (KIPP) Lynn applicants. Means appear in columns (1), (2), and (4). Column (3) shows differences between lottery winners and losers. These are coefficients from regressions that control for risk sets, namely, dummies for year and grade of application and the presence of a sibling applicant. Column (5) shows differences between KIPP students and applicants who did not attend KIPP. Standard errors are reported in parentheses.

Superman Arrives

Figure 3.2
IV in school: the effect of KIPP attendance on math scores

Note: The effect of Knowledge Is Power Program (KIPP) enrollment described by this figure is $.48 \sigma=.355 \sigma / .741$.

3 IV With Heterogeneous Potential Outcomes

3.1 The Four Types of Children

- KIPP lottery offers affect KIPP enrollment for many applicants . . . but not all
- Some offered a seat at KIPP nevertheless go elsewhere
- A few not offered a seat in the lottery manage to sneak in anyway
- How should we interpret IV estimates in light of this fact?

Table 3.2
The four types of children

		Lottery losers$Z_{i}=0$	
		Doesn't attend KIPP $D_{i}=0$	Attends KIPP $D_{i}=1$
	Doesn't attend KIPP $D_{i}=0$	Never-takers (Normando)	Defiers
Lottery winners $Z_{i}=1$	Attends KIPP $D_{i}=1$	Compliers (Camila)	Always-takers (Alvaro)

Note: KIPP = Knowledge Is Power Program.

> (Actually there are are only three: no defiers allowed!)

- In a world of heterogeneous potential outcomes,

$$
\lambda_{I V}=\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{E\left[D_{i} \mid Z_{i}=1\right]-E\left[D_{i} \mid Z_{i}=0\right]}=E\left[Y_{1 i}-Y_{0 i} \mid C_{i}=1\right]
$$

where C_{i} indicates compliers, like Camila

- Parameter $E\left[Y_{1 i}-Y_{0 i} \mid C_{i}=1\right]$ is called a local average treatment effect (LATE)
- In general, LATE differs from the effect of treatment on the treated, $E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]$, because some treated are always-takers, like Alvaro
- As detailed in MHE, the proportion of always-takers is given by $E\left[D_{i} \mid Z_{i}=0\right]$
- With few always-takers (as in the KIPP lottery), we expect:

$$
E\left[Y_{1 i}-Y_{0 i} \mid C_{i}=1\right] \approx E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]
$$

3.2 LATE Again: Effects of Vietnam-Era Military Service (Angrist 1990)

- From 1970-73, Uncle Sam selected soldiers in a draft lottery: Men born 1950-53 were called up by random sequence numbers (RSN), assigned to their DOB
- Men born in 1950 with $\mathrm{RSN}<195$ were draft-eligible
- This table is from MHE:

Table 4.1.3
IV Estimates of the Effects of Military Service on the Earnings of White Men born in 1950

Earnings year	Earnings		Veteran Status		Wald Estimate of Veteran Effect
	Mean	Eligibility Effect	Inelig. Mean	Eligibility Effect	
	(1)	(2)	(3)	(4)	
1981	16,461	$\begin{aligned} & -435.8 \\ & (210.5) \end{aligned}$. 182	$\begin{aligned} & .159 \\ & (.040) \end{aligned}$	$\begin{aligned} & -2,741 \\ & (1,324) \end{aligned}$
1971	3,338	$\begin{gathered} -325.9 \\ (46.6) \end{gathered}$			$\begin{array}{r} -2050 \\ (293) \end{array}$
1969	2,299	$\begin{gathered} -2.0 \\ (34.5) \end{gathered}$			

Note: Adapted from Table 5 in Angrist and Krueger (1999) and author tabulations. Standard errors are shown in parentheses. Earnings data are from Social Security administrative records. Figures are in nominal dollars. Vets status data are from the Survey of Program Participation. There are about 13,500 individuals in the sample.

- What's the LATE interpretation here?
- A Vietnam update:

- IV is everywhere! Reconsider, for example, the Carter, Greenberg and Walker (2017) class computer RCT and the OHP Medicaid effects in Taubman, et al. (2014)

4 Two-Stage Least Squares

In practice, we do IV by doing two-stage least squares (2SLS). This allows us to add covariates (controls) and to use multiple instruments to generate a more efficient (precise) IV estimate.

4.1 2SLS Derived

- Here's a nifty way to compute IV estimates: First, regress D_{i} on Z_{i}

$$
D_{i}=\alpha_{1}+\phi Z_{i}+e_{1 i}
$$

and save the first-stage fitted values:

$$
\hat{D}_{i}=\alpha_{1}+\phi Z_{i}
$$

Then regress Y_{i} on these

$$
\begin{equation*}
Y_{i}=\alpha_{2}+\lambda_{2 S L S} \hat{D}_{i}+e_{2 i} \tag{13}
\end{equation*}
$$

It's easy to show (be sure you can) that $\lambda_{2 S L S}$ in (13) equals $\lambda_{I V}$ in (8) in both population and sample

Covs in the mix

- Suppose the causal model of interest includes covariates, X_{i} :

$$
\begin{equation*}
Y_{i}=\alpha_{2}^{\prime} X_{i}+\lambda_{2 S L S} D_{i}+\eta_{i} \tag{14}
\end{equation*}
$$

In the Superman story, for example, X_{i} includes dummies for application year (KIPP offers are randomized conditional on this).

- Write the first stage with covariates as the sum of first-stage fitted values plus first-stage residuals:

$$
D_{i}=X_{i}^{\prime} \alpha_{1}+\phi Z_{i}+e_{1 i}=\hat{D}_{i}+e_{1 i}
$$

2 SLS in this case is OLS on the second-stage equation with covariates:

$$
\begin{equation*}
Y_{i}=\alpha_{2}^{\prime} X_{i}+\lambda_{2 S L S} \hat{D}_{i}+e_{2 i} \tag{15}
\end{equation*}
$$

- Why does this work? The key is that the second-stage residual is

$$
e_{2 i}=\lambda_{2 S L S} e_{1 i}+\eta_{i}
$$

and both pieces on the RHS are orthogonal to \hat{D}_{i}, that is, $E\left[\hat{D}_{i} e_{2 i}\right]=0$.

- The first stage and reduced form regressions for this model are,

$$
\begin{align*}
D_{i} & =X_{i}^{\prime} \alpha_{1}+\phi Z_{i}+e_{1 i} \tag{16}\\
Y_{i} & =X_{i}^{\prime} \alpha_{0}+\rho Z_{i}+e_{0 i} \tag{17}
\end{align*}
$$

Equation (17) is obtained by substituting (16) into (14).

- $\lambda_{2 S L S}$ is still the ratio of $R F$ to 1 st Stage coefficients:

$$
\lambda_{2 S L S}=\frac{\rho}{\phi}
$$

(show this)

- In practice, we plug the estimated first stage fits into the second stage. These are:

$$
D_{i}=X_{i}^{\prime} \hat{\alpha}_{1}+\hat{\phi} Z_{i}+\hat{e}_{1 i}=\hat{D}_{i}^{*}+\hat{e}_{1 i}
$$

We rely, therefore, on the fact that $\operatorname{plim} \frac{1}{N} \sum_{D_{i}^{*}} \hat{e}_{2 i}=0$. This allows us to say that $\hat{\lambda}_{2 S L S}$ is a consistent estimator of the causal effect of D_{i} on Y_{i} but it is not unbiased. Similarly, we claim only consistency for the sample analog of $\frac{\hat{\rho}}{\hat{\phi}}$.

Mightier with more instruments

- Blessed with more than one instrument?
- In the Superman story, we might use dummies for lottery offers made immediately (on lottery night) and later (to applicants on a waiting list)
- Add 'em to the first stage when baking the fits:

$$
D_{i}=X_{i}^{\prime} \alpha_{1}+\phi_{1} Z_{1 i}+\phi_{2} Z_{2 i}+e_{1 i}
$$

The second stage, equation (15), stays the same

- Models with more instruments than necessary are said to be over-identified

5 So Where Do Babies Come From?

- Lotteries are awesome! Other instruments come from deep institutional knowledge, revealing, for example, the effect of children on their parents' labor supply (Angrist and Evans, 1998)

5.1 The Quantity-Quality Trade-Off (Angrist, Lavy, and Schlosser, 2010)

- In the 1970s and 1980s, governments around the world discouraged childbearing in the belief that small families increase living standards

12 . reg workedm morekids agem1 agefstm boy1st boy2nd blackm hispm othracem, r

13 .
14 . *first stage and weeks reduced form: twins
15 . reg morekids multi2nd, r

17 . *Wald for twins
18 . ivregress 2 sls weeksm1 (morekids $=$ multi2nd)

Instrumental variables (2SLS) regression	Number of obs	$=$	$\mathbf{3 9 4 , 8 4 0}$
	Wald chi2(1)	$=$	$\mathbf{2 6 . 7 1}$
	Prob $>$ chi2	$=$	0.0000
	R-squared	$=$	0.0138
	Root MSE	$=$	$\mathbf{2 2 . 1 3 2}$

weeksm1	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
morekids	$\mathbf{- 3 . 2 7 6 3 3 9}$	$\mathbf{. 6 3 3 9 2 4 1}$	$\mathbf{- 5 . 1 7}$	0.000	$\mathbf{- 4 . 5 1 8 8 0 7}$	$\mathbf{- 2 . 0 3 3 8 7 1}$
_cons	$\mathbf{2 2 . 1 5 1 4 9}$	$\mathbf{. 2 5 7 3 0 0 2}$	$\mathbf{8 6 . 0 9}$	$\mathbf{0 . 0 0 0}$	$\mathbf{2 1 . 6 4 7 1 9}$	$\mathbf{2 2 . 6 5 5 7 9}$

Instrumented: morekids
Instruments: multi2nd

19 .
20 . *first stage and weeks reduced form: samesex
21. reg morekids samesex, r

22 . reg weeksm1 samesex, r

23 . *Wald for samesex

24

28 . reg educm multi2nd agem1 agefstm boy1st boy2nd blackm hispm othracem, r

29

Linear regression				Number of obs F(7, 394832) Prob > F R-squared Root MSE			394,840
							16567.41
							0.0000
							0.1941
							2.6475
agefstm	Robust			$\mathrm{P}>\|\mathrm{t}\| \quad$ [95\% Conf.			Interval]
	Coef.	Std. Err.	t				
samesex	. 0217124	. 0084313	2.58	0.010	. 005	874	. 0382375
agem1	. 3290979	. 0010836	303.71	0.000	. 326	741	. 3312217
boy1st	. 0089868	. 0084313	1.07	0.286	-. 007	383	. 025512
boy2nd	. 0188476	. 0084318	2.24	0.025	. 002	3216	. 0353737
blackm	-1.427105	. 012089	-118.05	0.000	-1.45	799	-1.403411
hispm	-. 5793764	. 0234604	-24.70	0.000	-. 62	358	-. 5333947
othracem	. 6225523	. 0280511	22.19	0.000	. 56	573	. 6775316
_cons	10.36963	. 0323018	321.02	0.000	10.3	632	10.43294

31 .
32 . *2sls: weeks (twins, w/covs)
3 . ivregress 2 sls weeksm1 (morekids $=$ multi2nd) agem1 agefstm boy1st boy2nd blackm hispm othracem, r

Instrumental variables (2SLS) regression				Number of obs Wald chi2(8) Prob > chi2 R-squared Root MSE			394,840			
				18168.92						
				0.0000						
				0.0654						
				21.545						
weeksm1	Robust						$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.		Interval]
	Coef.	Std. Err.	z							
morekids	-3.712292	. 6036268	-6.15				0.000	-4.895	379	-2.529205
agem1	1.307164	. 0209401	62.42				0.000	1.266	122	1.348205
agefstm	-1.186511	. 0300822	-39.44	0.000	-1.245	471	-1.127551			
boy1st	-. 0804947	. 0687157	-1.17	0.241	-. 2151	751	. 0541857			
boy2nd	-. 1385996	. 0687455	-2.02	0.044	-. 2733	383	-. 0038609			
blackm	6.075055	. 1192318	50.95	0.000	5.841	365	6.308745			
hispm	-1.603621	. 2187741	-7.33	0.000	-2.032	411	-1.174832			
othracem	2.482386	. 216284	11.48	0.000	2.058	477	2.906295			
_cons	6.210914	. 398797	15.57	0.000	5.429	286	6.992542			

Instrumented: morekids
Instruments: agem1 agefstm boy1st boy2nd blackm hispm othracem multi2nd
34 .
5 . *2sls: weeks (samesex, w/covs)
36 . ivregress 2 sls weeksm1 (morekids $=$ samesex) agem1 agefstm boy1st boy2nd blackm hispm othracem, r

Instrumented: morekids
Instruments: agem1 agefstm boy1st boy2nd blackm hispm othracem samesex
37 .
38 . *2sls: weeks (overid, w/covs)
39 . ivregress 2sls weeksm1 (morekids = multi2nd samesex) agem1 agefstm boy1st boy2nd blackm hispm othracem, r

[^0]

Instrumented: morekids
Instruments: agem1 agefstm boy1st boy2nd blackm hispm othracem multi2nd samesex

$$
40 \text {. }
$$

41 . *manual 2SLS
42 . reg morekids multi2nd samesex agem1 agefstm boy1st boy2nd blackm hispm othracem

Source	SS	df	MS	Number of obs$F(9,394830)$		94,840
						4708.57
Model	9200.59068	9	1022.28785	Pro	> F	0.0000
Residual	85722.3271	394,830	. 21711199	R-s	uared	0.0969
					R-squared	0.0969
Total	94922.9177	394,839	. 240409174	Roo	MSE	. 46595
morekids	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Con	Interval]
multi2nd	. 6049071	. 0080499	75.14	0.000	. 5891295	. 6206847
samesex	. 0614735	. 0014839	41.43	0.000	. 0585652	. 0643819
agem1	. 0301281	. 0002318	129.97	0.000	. 0296738	. 0305825
agefstm	-. 0452589	. 0002801	-161.58	0.000	-. 0458079	-. 0447099
boy1st	-. 0080449	. 0014839	-5.42	0.000	-. 0109533	-. 0051366
boy2nd	-. 0084413	. 0014839	-5.69	0.000	-. 0113497	-. 0055329
blackm	. 0696438	. 0023467	29.68	0.000	. 0650443	. 0742433
hispm	. 1565985	. 004367	35.86	0.000	. 1480392	. 1651578
othracem	. 0729161	. 0044574	16.36	0.000	. 0641797	. 0816525
_cons	. 3630539	. 0072301	50.21	0.000	. 3488831	. 3772248

43 . predict more_hat if e(sample)
(option xb assumed; fitted values)
44 . reg weeksm1 more_hat agem1 agefstm boy1st boy2nd blackm hispm othracem, r

$$
45
$$

46 . log close name: <unnamed>
log: /Users/joshangrist/Documents/teaching/14.32/2020/notes/LN14/AE98/AE98for1432.smcl
log type: smcl
closed on: 17 Apr 2020, 21:26:35

- China's One Child Policy is the most (in)famous of these anti-natalist policies
- Economists call the relationship between family size and living standards the quantity-quality tradeoff
- Are larger families really impoverished by their size? If only we could randomize the number of children and find out!
- Angrist and Evans (1998) and Angrist, Lavy, and Schlosser (2010) run natural experiments on family size in samples of women with 2 or more children
* The twins instrument, $Z_{1 i}$ indicates multiple second births (buy one, get one free!)
* The samesex instrument, $Z_{2 i}$ indicates mothers of two boys and two girls at parities 1 and 2 (diversify your sibling-sex portfolio!)
- $Z_{1 i}$ and $Z_{2 i}$ are both highly predictive of the number of children born in family i
- They're arguably independent of the potential human capital of the first-borns in these families (samples used to construct the tables below consists of first-born non-twin Israeli Jews aged 18-60 in the Census, whose mothers were born after 1930 and had their first birth between the ages of 15-45)

Table 3.4
Quantity-quality first stages

| | $\begin{array}{c}\text { Twins } \\ \text { instruments }\end{array}$ | | | $\begin{array}{c}\text { Same-sex } \\ \text { instruments }\end{array}$ | | $\begin{array}{c}\text { Twins and same- }\end{array}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (1) | (2) | | (3) | (4) | |
| sex instruments | | | | | | |$)$

Notes: This table reports coefficients from a regression of the number of children on instruments and covariates. The sample size is 89,445 . Standard errors are reported in parentheses.

Table 3.5
OLS and 2SLS estimates of the quantity-quality trade-off

		2SLS estimates		
	OLS	Twins	Same-sex	Twins and same-
Dependent variable	estimates instruments instruments	sex instruments		
Years of schooling	-.145	.174	.318	(4)
	$(.005)$	$(.166)$	$(.210)$	$(.128)$
High school graduate	-.029	.030	.001	.017
	$(.001)$	$(.028)$	$(.033)$	$(.021)$
Some college	-.023	.017	.078	.048
(for age $\geq 24)$	$(.001)$	$(.052)$	$(.054)$	$(.037)$
College graduate	-.015	-.021	.125	.052
(for age $\geq 24)$	$(.001)$	$(.045)$	$(.053)$	$(.032)$

Notes: This table reports OLS and 2SLS estimates of the effect of family size on schooling. OLS estimates appear in column (1). Columns (2), (3), and (4) show 2SLS estimates constructed using the instruments indicated in column headings. Sample sizes are 89,445 for rows (1) and (2); 50,561 for row (3); and 50,535 for row (4). Standard errors are reported in parentheses.

6 Sampling Variance of 2SLS Estimates

- Here's equation (15) without controls and with the second-stage residual written out:

$$
\begin{equation*}
Y_{i}=\alpha+\lambda_{2 S L S} \hat{D}_{i}+\left[\eta_{i}+\lambda\left(D_{i}-\hat{D}_{i}\right)\right] \tag{18}
\end{equation*}
$$

- 2SLS is OLS on this second-stage equation:

$$
\hat{\lambda}_{2 S L S}=\frac{\sum Y_{i}\left(\hat{D}_{i}-\bar{D}\right)}{\sum\left(\hat{D}_{i}-\bar{D}\right)^{2}}
$$

Substituting for Y_{i} :

$$
\begin{align*}
\hat{\lambda}_{2 S L S} & =\lambda_{2 S L S} \frac{\sum \hat{D}_{i}\left(\hat{D}_{i}-\bar{D}\right)}{\sum\left(\hat{D}_{i}-\bar{D}\right)^{2}}+\frac{\sum \hat{D}_{i} \eta_{i}}{\sum\left(\hat{D}_{i}-\bar{D}\right)^{2}}+\lambda_{2 S L S} \frac{\sum \hat{D}_{i}\left(D_{i}-\hat{D}_{i}\right)}{\sum\left(\hat{D}_{i}-\bar{D}\right)^{2}} \tag{19}\\
& =\lambda_{2 S L S}+\frac{\sum \hat{D}_{i} \eta_{i}}{\sum\left(\hat{D}_{i}-\bar{D}\right)^{2}}
\end{align*}
$$

- The last term in the first line above is zero (why?)
- Assuming η_{i} is homoscedastic with variance σ_{η}^{2}, the asymptotic standard error of $\hat{\lambda}_{2 S L S}$ is

$$
S E\left(\hat{\lambda}_{2 S L S}\right)=\frac{1}{\sqrt{n}} \frac{\sigma_{\eta}}{\sigma_{\hat{D}}}
$$

where σ_{η} is the std dev of residual η_{i} and $\sigma_{\hat{D}}$ is the std dev of first-stage fitted values, \hat{D}_{i}

Notes

- The standard errors generated by OLS estimation of (18) are wrong (why?)
- Stata ivregress gets 'em right
- $S E\left(\hat{\lambda}_{2 S L S}\right)$ is an asymptotic formula, derived under something like classical assumptions, but even given these assumptions, valid only in large samples
- Likewise, we can say only that $\hat{\lambda}_{2 S L S}$ is consistent; as a rule 2SLS estimates are biased
- The bias of 2SLS is proportional to the number of instruments in an over-identified model and inversely proportional to the first-stage F statistic for the instruments
* With many weak instruments, 2SLS estimates are likely to be misleadingly close to the corresponding OLS estimates
* Given a reasonably strong first stage, just-identified 2SLS estimates (one instrument for one endogenous regressor) are approximately unbiased
- Robust, clustered, and Newey-West standard errors for 2SLS are known to Stata (again, valid only in large samples)
* For more on 2SLS inference, see the MM Chapter 3 appendix and MHE chapter 8

[^0]: Instrumental variables (2SLS) regression \quad Number of obs $=\mathbf{3 9 4 , 8 4 0}$

