Intro to Multivariate Regression

1 Matchmaker, Matchmaker

- We use multivariate regression to control for confounding factors in an effort to create ceteris paribus comparisons
- Multivariate regression is an automatic matchmaker

We're often interested in the relationship between a dependent variable, Y_{i}, and another variable, $X_{1 i}$, in a scenario where the connection between Y_{i} and $X_{1 i}$ can be explained (in a statistical sense) by the fact that $X_{1 i}$ is associated with another variable, $X_{2 i}$, that also predicts Y_{i} (the association between health insurance and health in the NHIS might be explained by the higher schooling of the insured). In treatment effects problems, this is called selection bias. In a regression context, we call it omitted variables bias.

To keep things simple, suppose that $X_{1 i}$ is Bernoulli. "Holding things constant" in this case means we replace the unconditional comparison,

$$
E\left[Y_{i} \mid X_{1 i}=1\right]-E\left[Y_{i} \mid X_{1 i}=0\right]
$$

with conditional comparisons,

$$
\begin{equation*}
E\left[Y_{i} \mid X_{1 i}=1, X_{2 i}=x\right]-E\left[Y \mid X_{1 i}=0, X_{2 i}=x\right] \tag{1}
\end{equation*}
$$

In other words, we look at the CEF of Y given $X_{1 i}$, conditional on $X_{2 i}=x$.

- Such comparisons are said to be (not necessarily causal) "effects" of $X_{1 i}$, computed while matching on values of $X_{2 i}$.
- Matching doesn't produce 100% ceteris paribus comparisons, but it takes us some way on the path to this. Matching on $X_{2 i}$ ensures that our comparison of averages across values of $X_{1 i}$ have the same value of $X_{2 i}$
- Note that $E\left[Y_{i} \mid X_{1 i}=1, X_{2 i}=x\right]-E\left[Y_{i} \mid X_{1 i}=0, X_{2 i}=x\right]$ takes on as many values as there are values of $X_{2 i}$
- As we'll soon see, multiple regression neatly combines sets of matched comparisons into a single controlled average effect, while also giving us the necessary standard errors for this single average effect

1.1 Multivariate Regression Makes Me a Match

- Our controls, $X_{2 i}$, often take on many values (either because there is more than one thing to be controlled or because the individual controls take on many values, like SAT scores in $M M$ Chapter 2). This threatens to overwhelm us with a multitude of conditional comparisons.
- Regression methods solve this problem by fitting a linear model with a single conditional effect.

As an expedient, assume the CEF given $X_{1 i}$ and $X_{2 i}$ is linear:

$$
\begin{equation*}
E\left[Y_{i} \mid X_{1 i}, X_{2 i}\right]=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i} \tag{2}
\end{equation*}
$$

Equivalently, write

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} \quad E\left[\varepsilon_{i} \mid X_{1 i}, X_{2 i}\right]=0 \tag{3}
\end{equation*}
$$

Equation (3) reminds us that CEF residuals are mean zero and mean-independent of conditioning variables. Consequently, β_{0}, β_{1}, β_{2} solve

$$
\begin{gather*}
E\left[Y_{i}-\beta_{0}-\beta_{1} X_{1 i}-\beta_{2} X_{2 i}\right]=E\left[\varepsilon_{i}\right]=0 \tag{4}\\
E\left[\left(Y_{i}-\beta_{0}-\beta_{1} X_{1 i}-\beta_{2} X_{2 i}\right) X_{1 i}\right]=E\left[\varepsilon_{i} X_{1 i}\right]=0 \\
E\left[\left(Y_{i}-\beta_{0}-\beta_{1} X_{1 i}-\beta_{2} X_{2 i}\right) X_{2 i}\right]=E\left[\varepsilon_{i} X_{2 i}\right]=0
\end{gather*}
$$

Coefficients derived by solving this system define the multivariate regression of Y_{i} on $X_{1 i}$ and $X_{2 i}$.

- What if the CEF is nonlinear? Then, as detailed in MHE Chpt 3 and the third set of regressions notes, multivariate regression provides a best-in-class linear approximation to any CEF
- An important consequence of approximation awesomeness, which we'll "prove" by computer, is that regression is an automatic matchmaker

1.1.1 Asians and Whites Under Control

- In a sample of prime age male high school grads in the 2016 American Community Survey, Asians (75% foreign-born) earn more than whites
. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
agep	57,696	44.632	2.834972	40	49
wagp	57,696	85197.99	88589.83	0	714000
wkhp	57,696	45.16632	10.0141	1	99
racasn	57,696	.0987243	.2982941	0	1
racpi	57,696	.0009706	.0311397	0	1
racwht	57,696	.9083299	.2885622	0	1
uhe	56,924	34.81603	29.37749	0	201.5789
loguhe	53,750	3.361481	.7235695	-6.437752	5.306181
immig	57,696	.1748475	.3798399	0	1
yearsEd	57,696	14.53616	2.42775	1	1
hsgrad	57,696		1		0
somecol	57,696	.5348551	.498788	0	1
colgrad	57,696	.4422664	.4966599	0	1
asianpac	57,696	.0987243	.2982941	0	1
white	57,289	.9076786	.2894816	0	1

60 . bys asianpac: summarize loguhe yearsEd colgrad immig

```
-> asianpac = 0
```

Variable	Obs	Mean	Std. Dev.	Min	Max
loguhe	48,411	3.345458	.7155705	-6.437752	5.306181
yearsEd	52,000	14.40617	2.377595	12	21
colgrad	52,000	.4188462	.4933748	0	1
immig	52,000	.11025	.3132041	0	1

-> asianpac $=1$

Variable	Obs	Mean	Std. Dev.	Min	Max
loguhe	5,339	3.506776	.7775642	-3.912023	5.30231
yearsEd	5,696	15.72279	2.555968	12	21
colgrad	5,696	.6560744	.4750583	0	1
immig	5,696	.7645716	.4243035	0	1

- Asians in this sample are mostly immigrants yet immigrants earn less and Asians earn more - what's up w/that?
- Is the Asian effect causal? (Ponder potential outcomes). Either way, ethnicity gaps in college graduation rates might explain it
- Compare the college-controlled reg estimate of 0.0167 to the average conditional-on-college Asian effect:

$$
-.0756 \frac{29903}{53750}(=.556)+.0689 \frac{23847}{53750}(=.444) \simeq-.01
$$

	125.139748	1	125.139748	F (1,53748)		40.08
Model				Prob > F		. 0000
Residual	28015.2987	53,748	. 521234253	R-squared Adj R-squared		0.0044
			. 523552781			0.0044
Total	28140.4384	53,749		Root MSE		. 72197
loguhe	Coef.	Std. Err.	t	$p>\|t\|$	[95\% Con	Interval]
asianpac	. 1613188	. 0104113	15.49	0.000	. 1409126	. 1817249
_cons	3.345458	. 0032813	1019.56	0.000	3.339026	3.351889

63 . reg loguhe asianpac colgrad

Source	SS	df	MS	Number of obs			53,750
Model	4869.57938	2	2434.78969	Pro			0.0000
Residual	23270.859	53,747	. 43297038	R-s			0.1730
Total	28140.4384	53,749	. 523552781	Roo			. 658
loguhe	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Con		Interval]
asianpac	. 016507	. 0095892	1.72	0.085	-. 002288		. 0353019
colgrad	. 6043304	. 0057731	104.68	0.000	. 593015		. 6156457
_cons	3.091722	. 0038496	803.14	0.000	3.084176		3.099267

64 . reg loguhe asianpac yearsEd

Source	SS	df	MS	Number of obs$F(2,53747)$		53,750
Model	5332.56924	2	2666.28462			$\begin{array}{r} 6283.13 \\ 0.0000 \end{array}$
Residual	22807.8692	53,747	. 424356134	R-s	uared	0.1895
					R-squared	0.1895
rotal	28140.4384	53,749	. 523552781	Roo	MSE	. 65143
loguhe	Coef.	Std. Err.	t	$p>\|t\|$	[95\% Conf	Interval]
asianpac	-. 0109312	. 0095219	-1.15	0.251	-. 0295942	. 0077317
yearsEd	. 1301684	. 0011751	110.78	0.000	. 1278653	. 1324715
_cons	1.469512	. 0171914	85.48	0.000	1.435816	1.503207

65.

66 . bys colgrad: reg loguhe asianpac

Source	SS	df	MS	Num	of obs	$=$	29,903
Model	9.74715785	1	9.74715785	Pro		=	0.0000
Residual	11600.8634	29,901	. 387975766	R-s	red		0.0008
Total	11610.6105	29,902	. 388288761	Roo		$=$	0.0008 .62288
loguhe	Coef.	Std. Err.	t	$p>\|t\|$	[95\% Conf. Interval]		
asianpac	-. 0755548	. 0150739	-5.01	0.000	-. 1051003		-. 0460093
_cons	3.097319	. 0037168	833.34	0.000	3.090034		3.104604

-> colgrad $=1$

Source	SS	df	MS
Model Residual	14.2407638	11647.2907	23,845
Total	14888458407		
11661.5315	23,846	.48903512	

Number of obs	$=$	23,847
F(1, 23845)	$=$	29.15
Prob $>$ F	$=$	0.0000
R-squared	$=$	0.0012
Adj R-squared	$=$	0.0012
Root MSE	$=$.6989
$\quad 4$		

loguhe	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
asianpac	.068885	.0127577	5.40	0.000	.0438791	.0938908
_cons	$\mathbf{3 . 6 8 8 3 1 8}$.0049022	$\mathbf{7 5 2 . 3 9}$	0.000	3.67871	$\mathbf{3 . 6 9 7 9 2 7}$

1.2 Regression Anatomy

- Equations (4) don't immediately reveal just how multivariate regression works its matching magic.
- Here's a better way. Start with

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} \tag{5}
\end{equation*}
$$

- Consider the following two auxiliary regressions:

$$
\begin{aligned}
& X_{1 i}=\delta_{10}+\delta_{12} X_{2 i}+\tilde{x}_{1 i} \\
& X_{2 i}=\delta_{20}+\delta_{21} X_{1 i}+\tilde{x}_{2 i}
\end{aligned}
$$

where the δ 's are bivariate regression coefficients [e.g., $\left.\delta_{12}=\operatorname{COV}\left(X_{1 i}, X_{2 i}\right) / V\left(X_{2 i}\right)\right]$
Regression-anatomy theorem.

$$
\begin{aligned}
& \beta_{1}=\operatorname{COV}\left(Y_{i}, \tilde{x}_{1 i}\right) / V\left(\tilde{x}_{1 i}\right) \\
& \beta_{2}=\operatorname{COV}\left(Y_{i}, \tilde{x}_{2 i}\right) / V\left(\tilde{x}_{2 i}\right)
\end{aligned}
$$

Proof. Substitute for Y using $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}$, where ε_{i} is mean-zero and uncorrelated with the regressors by definition.

- The multivariate β_{1} captures the effect of $\tilde{x}_{1 i}$, the part of X_{1} that is not explained (in a regression sense) by X_{2}
- The multivariate β_{2} captures the effect of $\tilde{x}_{2 i}$, the part of X_{2} that is not explained (in a regression sense) by X_{1}

REGRESSION ANATOMY

Source	SS	df	MS	Number of obs$F(3,53746)$		$=$	53,750
Model	5368.08594	3	1789.36198	Pro	> F		0.0000
Residual	22772.3525	53,746	. 423703205	R-s	uared		0.1908
Total	28140.4384	53,749	523552781	Roo	R-square		0.1907
loguhe	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	f.	Interval]
asianpac	-. 008028	. 0095198	-0.84	0.399	-. 0266869		. 0106309
yearsEd	. 1302794	. 0011742	110.95	0.000	. 1279779		. 1325808
agep	. 0090692	. 0009906	9.16	0.000	. 0071276		. 0110107
_cons	1.062983	. 0476094	22.33	0.000	. 9696681		1.156298

71 .
. **step 1
73 .
74 . reg asianpac age yearsEd if e(sample)==1

Source	SS	df	MS
Model Residual	133.428423	2	66.7142115
Total	4808.67589	53,749	.089465402

Number of obs	$=\mathbf{5 3 , 7 5 0}$	
$\mathrm{F}(2,53747)$	$=$	$\mathbf{7 6 6 . 9 5}$
Prob $>\mathrm{F}$	$=$	$\mathbf{0 . 0 0 0 0}$
R-squared	$=$	$\mathbf{0 . 0 2 7 7}$
Adj R-squared	$=$	$\mathbf{0 . 0 2 7 7}$
Root MSE	$=$	$\mathbf{. 2 9 4 9 3}$

asianpac	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
agep	-.003466	.0004486	$\mathbf{- 7 . 7 3}$	0.000	-.0043452	-.0025868
yearsEd	.0200877	$\mathbf{. 0 0 0 5 2 4 9}$	$\mathbf{3 8 . 2 7}$	$\mathbf{0 . 0 0 0}$.0190588	.0211166
_cons	-.0381703	$\mathbf{. 0 2 1 5 7 1 2}$	$\mathbf{- 1 . 7 7}$	$\mathbf{0 . 0 7 7}$	-.08045	.0041095

80 .
81 . log close

- It works! Phew!

2 Estimation and Inference

- Multivariate regression is our bread and butter! It is our version of the clinician's stratified RCT and the laboratory scientist's "controlled experiment" (but cheaper, no gloves needed, and much easier clean-up when we're done)
- We construct estimators by replacing sample moments with population moments (In practice, Stata does this for us)
- The tools of regression inference include:

1. t-tests and coefficient standard errors
2. F-statistics for joint tests

- Details done in MM and MHE

3 Regression, Causality, and Control

The Dale and Krueger (DK; 2002) study looks at difference in earnings between graduates of more and less selective colleges, as measured by the average SAT scores at their schools. To make this into a Bernoulli treatment, we look here (and in $M M$, Chpt 2) at a dummy for graduation from a private institution (which are also more selective than public, on average). Two of my former Ph.D. students were admitted to Harvard yet attended their local state (public) schools. Today, these students are professors in top econ departments - not bad! But perhaps they would have done better if they attended (private) Harvard instead. Who knows, they might even have found jobs on Wall Street!

These are just two data points, of course. But in larger and more representative samples, comparisons between private and state school graduates consistently show higher earnings for those who went private. No surprise! Something must justify the many thousands of dollars these schools collect from their students.

On the other hand, part of the difference in earnings between private and public college grads is surely attributable to differences in the characteristics $\left(Y_{0 i}^{\prime} s\right)$ of people who did and didn't attend private schools. Variables that are likely to differ with school type include students' own SAT scores (which are correlated with their earnings), the kinds of school they applied to (which says something about students' own judgements of their ability) and family income (which is also correlated with earnings).

- We'd like to hold these things constant, that is, to "control" for them when comparing groups of students who went to different types of schools
- Such control brings us one giant step closer to an ideal experiment

3.1 The Payoff to Private College

The DK research design, as implemented in Chapter 2 of MM, looks at students who applied to and were admitted to schools of similar selectivity.

- Consider a hypothetical set of applicants, all of whom applied to one or more schools among three, Ivy, Leafy, and Smart. The matching matrix these students face appears below:

Applicant Group	Student	Private			Public			1996 Earnings
		Ivy	Leafy	Smart	All State	Ball State	Altered State	
A	1		Reject	Admit		Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
B	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
C	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

Notes: Students enroll at the college indicated in bold; enrollment decisions are also highlighted in grey.

- Five of nine students (numbers $1,2,4,6,7$) attended private schools. Average earnings in this group are $\$ 92,000$. The other four, with average earnings of $\$ 72,500$, went to a public school. The almost $\$ 20,000$ gap between these two groups suggests a large private school advantage.

The hypothesis motivating a DK-style analysis is that, conditional on the identity (or selectivity) of schools that I've applied to, and the identity (or selectivity) of schools that have admitted me, comparisons of students who went to different schools (say, one to public and one to private) are more likely to be "apples to apples." In other words, we uncover the effects of private school attendance by ...

- Comparing students 1 and 2 with student 3 in group A and by comparing student 4 and student 5 in Group B
- Discarding students in groups C and D (why?)
- The average of the -5 thousand dollars gap for group A and the 30,000 gap dollars for group B is $\$ 12,500$. This is a good estimate of the effect of private school attendance on average earnings because it controls (at least partially) for applicants' ambition and ability
- Notice that overall earnings in Group A are much higher than overall average earnings in group B. Our within-group matching estimate of 12,500 eliminates this source of bias in our causal inquiry

Instead of averaging these group-specific contrasts by hand, regress!

- With only one control variable, A_{i}, the regression of interest can be written:

$$
\begin{equation*}
Y_{i}=\alpha+\beta P_{i}+\gamma A_{i}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

- The distinction between the causal variable, P_{i}, and the control variable, A_{i}, in equation (6) is conceptual, not formal: there is nothing in equation (6) to indicate which is which.
- Using data for the five students in Groups A and B generates $\beta=10,000$ and $\gamma=60,000$. The private school coefficient in this case is 10,000 , close to the we got by averaging the public-private contrasts within groups A and B and well below the raw public-private difference of almost 20,000.

Public-Private Face-Off

The College and Beyond (C\&B) data set includes over 14,000 college graduates who attended 30 schools. We can increase the number of useful comparisons by deeming schools to be "matched" if they are equally selective instead of insisting on identical matches.

- To fatten up the selectivity categories, we'll call schools comparable if they fall into the same Barron's selectivity categories

In the College and Beyond data, 9,202 students can be matched in this way. Because we're interested in public-private comparisons, however, our Barron's matched sample is also limited to matched applicant groups that contain both public and private school graduates. This leaves 5,583 matched applicants for analysis. These matched applicants fall into 151 different selectivity groups containing both public and private graduates.

Our operational regression model for the Barron's selectivity-matched sample includes many control variables, while the stylized example controls only for the dummy variable A_{i}, indicating students in group A. The key controls in the operational model consist of a set of many dummy variables indicating all Barron's matches represented in the sample (with one group left out as a reference category). These controls capture
the relative selectivity of the schools to which applicants have applied and been admitted in the real world, where many combinations of schools are possible. The resulting regression model looks like this:

$$
\begin{equation*}
\ln Y_{i}=\alpha+\beta P_{i}+\sum_{j=1}^{150} \gamma_{j} G R O U P_{j i}+\delta_{1} S A T_{i}+\delta_{2} \ln P I_{i}+\varepsilon_{i} \tag{7}
\end{equation*}
$$

- The parameter β in this model is still the coefficient of interest, an estimate of the causal effect of attendance at a private school
- This model controls for 151 groups instead of the two groups in our stylized example. The parameters γ_{j}, for $j=1$ to 150 , are the coefficients on 150 selectivity-group dummies, denoted GROU $P_{j i}$
- The variable $G R O U P_{j i}$ equals 1 whenever student i is in group j and is 0 otherwise; the summation symbol, $\sum_{j=1}^{150}$, indicates a sum from $j=1$ to 150
- We add two further control variables: individual SAT scores and the log of parental income, plus a few more we haven't bother to write out

	No Selection Controls			Selection Controls		
	(1)	(2)	(3)	(4)	(5)	(6)
Private School	$\begin{gathered} 0.135 \\ (0.055) \end{gathered}$	$\begin{gathered} \hline 0.095 \\ (0.052) \end{gathered}$	$\begin{gathered} \hline 0.086 \\ (0.034) \end{gathered}$	$\begin{gathered} \hline 0.007 \\ (0.038) \end{gathered}$	$\begin{gathered} \hline 0.003 \\ (0.039) \end{gathered}$	$\begin{gathered} \hline 0.013 \\ (0.025) \end{gathered}$
Own SAT score/100		$\begin{gathered} 0.048 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.007) \end{gathered}$		$\begin{gathered} 0.033 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.007) \end{gathered}$
Predicted \log (Parental Income)			$\begin{gathered} 0.219 \\ (0.022) \end{gathered}$			$\begin{gathered} 0.190 \\ (0.023) \end{gathered}$
Female			$\begin{gathered} -0.403 \\ (0.018) \end{gathered}$			$\begin{gathered} -0.395 \\ (0.021) \end{gathered}$
Black			$\begin{gathered} 0.005 \\ (0.041) \end{gathered}$			$\begin{aligned} & -0.040 \\ & (0.042) \end{aligned}$
Hispanic			$\begin{gathered} 0.062 \\ (0.072) \end{gathered}$			$\begin{gathered} 0.032 \\ (0.070) \end{gathered}$
Asian			$\begin{gathered} 0.170 \\ (0.074) \end{gathered}$			$\begin{gathered} 0.145 \\ (0.068) \end{gathered}$
Other/Missing Race			$\begin{aligned} & -0.074 \\ & (0.157) \end{aligned}$			$\begin{aligned} & -0.079 \\ & (0.156) \end{aligned}$
High School Top 10 Percent			$\begin{gathered} 0.095 \\ (0.027) \end{gathered}$			$\begin{gathered} 0.082 \\ (0.028) \end{gathered}$
High School Rank Missing			$\begin{gathered} 0.019 \\ (0.033) \end{gathered}$			$\begin{gathered} 0.015 \\ (0.037) \end{gathered}$
Athlete			$\begin{gathered} 0.123 \\ (0.025) \end{gathered}$			$\begin{gathered} 0.115 \\ (0.027) \end{gathered}$
Selection Controls	N	N	N	Y	Y	Y

Notes: Columns (1)-(3) include no selection controls. Columns (4)-(6) include a dummy for each group formed by matching students according to schools at which they were accepted or rejected. Each model is estimated using only observations with Barron's matches for which different students attended both private and public schools. The sample size is 5,583 . Standard errors are shown in parentheses.

- Perhaps it's enough to control linearly for the average SAT scores of the schools to which I'm admitted, as well as the number to which I apply. Here's how that comes out:

	No Selection Controls			Selection Controls		
	(1)	(2)	(3)	(4)	(5)	(6)
Private School	$\begin{gathered} 0.212 \\ (0.060) \end{gathered}$	$\begin{gathered} \hline 0.152 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.139 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.034 \\ (0.062) \end{gathered}$	$\begin{gathered} \hline 0.031 \\ (0.062) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.039) \end{gathered}$
Own SAT Score/100		$\begin{gathered} 0.051 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.006) \end{gathered}$		$\begin{gathered} 0.036 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.006) \end{gathered}$
Predicted \log (Parental Income)			$\begin{gathered} 0.181 \\ (0.026) \end{gathered}$			$\begin{gathered} 0.159 \\ (0.025) \end{gathered}$
Female			$\begin{aligned} & -0.398 \\ & (0.012) \end{aligned}$			$\begin{aligned} & -0.396 \\ & (0.014) \end{aligned}$
Black			$\begin{aligned} & -0.003 \\ & (0.031) \end{aligned}$			$\begin{aligned} & -0.037 \\ & (0.035) \end{aligned}$
Hispanic			$\begin{gathered} 0.027 \\ (0.052) \end{gathered}$			$\begin{gathered} 0.001 \\ (0.054) \end{gathered}$
Asian			$\begin{gathered} 0.189 \\ (0.035) \end{gathered}$			$\begin{gathered} 0.155 \\ (0.037) \end{gathered}$
Other/Missing Race			$\begin{aligned} & -0.166 \\ & (0.118) \end{aligned}$			$\begin{aligned} & -0.189 \\ & (0.117) \end{aligned}$
High School Top 10 Percent			$\begin{gathered} 0.067 \\ (0.020) \end{gathered}$			$\begin{gathered} 0.064 \\ (0.020) \end{gathered}$
High School Rank Missing			$\begin{gathered} 0.003 \\ (0.025) \end{gathered}$			$\begin{aligned} & -0.008 \\ & (0.023) \end{aligned}$
Athlete			$\begin{gathered} 0.107 \\ (0.027) \end{gathered}$			$\begin{gathered} 0.092 \\ (0.024) \end{gathered}$
Average SAT Score of Schools Applied to/100				$\begin{gathered} 0.110 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.082 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.077 \\ (0.012) \end{gathered}$
Sent Two Application				$\begin{gathered} 0.071 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.058 \\ (0.010) \end{gathered}$
Sent Three Applications				$\begin{gathered} 0.093 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.079 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.066 \\ (0.017) \end{gathered}$
Sent Four or more Applications				$\begin{gathered} 0.139 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.127 \\ (0.023) \end{gathered}$	$\begin{gathered} 0.098 \\ (0.020) \\ \hline \end{gathered}$

Note: Standard errors are shown in parentheses. The sample size is 14,238 .

- This buys us a larger sample and doesn't much change the results
- What about school selectivity instead of the public/private distinction? Here's a model much like DK's original:

	No Selection Controls			Selection Controls		
	(1)	(2)	(3)	(4)	(5)	(6)
School Avg. SAT Score/100	$\begin{gathered} 0.109 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.025) \end{gathered}$	$\begin{gathered} 0.076 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.021 \\ & (0.026) \end{aligned}$	$\begin{aligned} & \hline-0.031 \\ & (0.026) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.018) \end{gathered}$
Own SAT score/100		$\begin{gathered} 0.049 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.018 \\ (0.006) \end{gathered}$		$\begin{gathered} 0.037 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.006) \end{gathered}$
Predicted \log (Parental Income)			$\begin{gathered} 0.187 \\ (0.024) \end{gathered}$			$\begin{gathered} 0.161 \\ (0.025) \end{gathered}$
Female			$\begin{aligned} & -0.403 \\ & (0.015) \end{aligned}$			$\begin{aligned} & -0.396 \\ & (0.014) \end{aligned}$
Black			$\begin{aligned} & -0.023 \\ & (0.035) \end{aligned}$			$\begin{aligned} & -0.034 \\ & (0.035) \end{aligned}$
Hispanic			$\begin{gathered} 0.015 \\ (0.052) \end{gathered}$			$\begin{gathered} 0.006 \\ (0.053) \end{gathered}$
Asian			$\begin{gathered} 0.173 \\ (0.036) \end{gathered}$			$\begin{gathered} 0.155 \\ (0.037) \end{gathered}$
Other/Missing Race			$\begin{aligned} & -0.188 \\ & (0.119) \end{aligned}$			$\begin{aligned} & -0.193 \\ & (0.116) \end{aligned}$
High School Top 10 Percent			$\begin{gathered} 0.061 \\ (0.018) \end{gathered}$			$\begin{gathered} 0.063 \\ (0.019) \end{gathered}$
High School Rank Missing			$\begin{gathered} 0.001 \\ (0.024) \end{gathered}$			$\begin{aligned} & -0.009 \\ & (0.022) \end{aligned}$
Athlete			$\begin{gathered} 0.102 \\ (0.025) \end{gathered}$			$\begin{gathered} 0.094 \\ (0.024) \end{gathered}$
Average SAT Score of Schools Applied To/100				$\begin{gathered} 0.138 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.116 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.013) \end{gathered}$
Sent Two Application				$\begin{gathered} 0.082 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.075 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.011) \end{gathered}$
Sent Three Applications				$\begin{gathered} 0.107 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.096 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.074 \\ (0.022) \end{gathered}$
Sent Four or more Applications				$\begin{gathered} 0.153 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.143 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.025) \end{gathered}$

Note: Standard errors are shown in parentheses. The sample size is 14,238 .

- Pity my poor parents, whom I made a little poorer by attending Oberlin, a pricey private college. It seems I could just as well have gone to Penn State!

