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Regression Theory

1 Regression and the CEF

1.1 Defining Regression
Regression is a many-splendored thing. I like to define the regression of Yi on a vector of covariates, Xi, as
the best linear predictor (BLP) of Yi given Xi. This regression origin story gives no quarter to the question
of why we’re running it.

To appreciate the power of the BLP framework, it’s enough to consider a single regressor, X1i. The
regression slope and intercept can be defined to be the values of a and b that minimize mean (expected)
squared prediction error of Yi as a linear function of X1i. This minimization problem can be written:

MSEY |X1
(a, b) = E(Yi − a− bX1i)
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The solution is the regression slope and intercept, β and α:

b = β ≡ E[(Yi − E(Yi))X1i]

E[(X1i − E(X1i))X1i]
=
C(X1i, Yi)

V (Xi)

a = α ≡ E[Yi]− E[X1i]β

Regression is the BLP for any Yi given any X1i. It’s up to you to make your prediction problems interesting
and relevant.

1.2 Regression and Causality
Regression is causal when the corresponding conditional expectation function (CEF) is causal. If, for example
Yi is fall grades and Di is a treatment dummy indicating students receiving randomized GPA incentives,
then E[Yi|Di,Wi] has a causal interpretation, revealing differences in average potential GPAs indexed by
Di, conditional on control variables, Wi.

• The regression of Yi on Di and Wi inherits this CEFs causal interpretation

• In these notes, we’re unconcerned with causality. Here, briefly, we’re merely regression mechanics

1.3 Reasons to Love
The BLP property one of regression’s key features. My love for regression is nourished by the following
theorems as well:

The Linear CEF Theorem. Suppose that

E[Yi | X1i] = a+ bX1i, (1)

for some constants, a and b. Then:

b = β ≡ C(X1i, Yi)

V (Xi)
(2)

a = α ≡ E[Yi]− E[X1i]β (3)
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Proof. By properties of the CEF

E(Yi − E[Yi|X1i]) = 0 (4)
E((Yi − E[Yi|X1i])X1i) = 0 (5)

Assuming E[Yi | Xi] = a+ bXi we have

E(Yi − a− bX1i) = 0 or a = α = E[Yi]− E[X1i]b (6)
E((Yi − a− bX1i)X1i) = 0 or E[(Yi − E(Yi))X1i − b(X1i − E(X1i))X1i] = 0 (7)

So, b=β ≡ E[(Yi−E(Yi))X1i]
E[(Xi−E(Xi))X1i]

= C(X1i,Yi)
V (X1i)

My favorite regression feature is this:

The Linear Approximation Theorem. α and β are the values of a and b that minimize:

MSEE[Y |X](a, b) = E (E[Yi | X1i]− a− bX1i)
2

Proof. The first order conditions for this minimization problem are

∂MSE/∂a = E(E[Yi | X1i]− a− bX1i) = 0 (8)
∂MSE/∂b = E((E[Yi | X1i]− a− bX1i)X1i) = 0 (9)

Iterating expectations (6) and (7) over Xi shows them to imply (8) and (9).

• The pic below shows how regression threads the CEF
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• The regression slope and intercept provide the least square fit to E[Yi|Xi] as well as to Yi

2 Regression for Dummies
When the conditioning variable is a dummy, say Di, then E[Yi | Di] is indeed linear:

E[Yi | Di] = E[Yi | Di = 0] + (E[Yi | Di = 1]− E[Yi | Di = 0])Di
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By the Linear CEF theorem, therefore, the regression slope and intercept satisfy

α =E[Yi|Di = 0] = E[Yi]− E[Di]β

β =E[Yi|Di = 1]− E[Yi|Di = 0] = C(Di, Yi)/V (Di)

(Show this at home)

• Regressions estimate differences in means. We saw this use of regression in analysis of data from
experiments like ALO (2009) and classroom electronics. Sometimes we add control variables to this
regression (like high school GPA), making it a multivariate regression.

• When regressors are discrete and our model includes a dummy for all possible values they might take,
the model is said to be saturated. The Linear CEF theorem applies to all saturated models.

• Multivariate regression is also an automatic matchmaker, that is, a simple strategy to make ceteris
paribus comparisons involving the focal regressor, with control regressors held fixed. Consider coeffi-
cient δ in the regression of Yi on Di and a vector of saturated dummy controls, Wi:

Yi = W ′iγ + δDi + εi,

where εi is the regression error. Then

δ = E[δ(Wi)σ
2
D(Wi)],

where δ(Wi) = E[Yi|Di = 1,Wi] − E[Yi|Di = 0,Wi] and σ2
D(Wi) is conditional variance function for

Di given Wi. The proof of this uses the theorems given in Section 1, above. The ideas behind this
important result are sketched in MM and detailed in MHE.

3 Ordinary Least Squares
We estimate α and β with sample analogs:

α̂ = Ȳ − X̄1β̂

β̂ = sX1Y /s
2
X1

These Ordinary Least Squares (OLS) estimators of α and β seem natural and indeed have good statistical
properties.

• Traditional ’metrics texts derive OLS as the solution to a sample least squares problem:

– Given observations on a pair of random variables: {(Yi, X1i); i = 1, . . . , n}, you’d like to “model”
Yi as a linear function of X1i

– How should you pick the slope and intercept? Minimizing the sample sum of squared errors,

M̂SEY |X(a, b) =
∑
i

(Yi − a− bX1i)
2,

generates α̂ and β̂, above

– Prove this at home
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4 Make Mine Multivariate
• We’re rarely interested in models with a single regressor. Rather, most ’metrics masters seek the

regression of Yi on a vector of k explanatory variables, Xi. The multivariate regression slope vector is
then defined as the minimizer of

MSEY |X(b) = E(Yi − b′Xi)
2,

where b is now a k × 1 vector of coefficients

• The solution for this is
b = β ≡ E[XiX

′
i]
−1E[XiYi] (10)

(the constant in this model is the coefficient on a regressor that equals 1 for every i)

• As many of you will know, the multivariate OLS estimator is the sample analog of this β, an estimator
that can be written:

β̂ = [X ′X]−1X ′Y, (11)

where, in a sample of size n, Y is the n×1 column vector formed by stacking the Yi and X is the n×k
matrix of regressors with rows X ′i

• In my view, formulas (10) and (11) add little to our understanding of regression, though they’re surely
of use to computer programmers tasked with computing regression estimates

– Regression anatomy and the variance-weighting interpretation of OLS estimates discussed in MHE
tell us how, exactly, regression generates controlled comparisons

– That’s it for the theory

Fear no more!
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