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FE and ME, Mastered by IV

This note recounts a ’metrics drama in three acts. First, we see how data on siblings can be used to
control for omitted variables bias in estimates of the economic returns to schooling. The key idea here is to
use panel data to control for unobserved individual effects, also known as “fixed effects” (FEs). Invisibility
notwithstanding, it’s these effects fixedness that allows us to control for them. Act II reveals, however,
that the news is not all good: attenuation bias due to measurement error (ME) tends to shrink regression
coefficients towards zero, and attenuation bias is greatly aggravated in regression models with fixed effects.
Models with fixed effects may therefore suggest the returns to schooling are low simply because schooling is
measured poorly. Finally, Act III shows how instrumental variables methods resolve the FE/ME conundrum.

1 Fixed Effects: Twins Double the Fun

Twinsburg (Ohio) embraces its zygotic heritage with an eponymous annual Twins Festival. Not wanting to
miss the party, labor economists use exotic zygotic data from the Twins Festival to control for OVB.

• The long regression that motivates a twins analysis of the economic returns to schooling can be written:

lnYif = αl + ρlSif + λAif + elif . (1)

Here, subscript f stands for family, while subscript i = 1, 2 indexes twin siblings, say Karen and Sharon
or Ronald and Donald.

• Control variable Aif is a measure of ability, motivation, or talent, conditional on which we imagine
schooling, Sif , is as good as randomly assigned.

– Alas, Aif is not part of the Current Population Survey.

• Since Ronald and Donald have the same parents, were mostly raised together, and may even have the
same genes, we might reasonably assume Aif = Af . Given this fixedness, we can write:

lnY1f = αl + ρlS1f + λAf + el1f

lnY2f = αl + ρlS2f + λAf + el2f .

Subtracting the equation for Donald from that for Ronald gives:

lnY1f − lnY2f = ρl (S1f − S2f ) + (el1f − el2f ), (2)

a regression model that captures the coefficient of interest and from which unobserved ability disap-
pears!

– From this we learn that when ability is constant within twin pairs, a regression of the difference
in twins’ earnings on the difference in their schooling recovers the long regression coefficient, ρl.

• Column 1 in MM Table 6.2 reports estimates of a short regression in levels (short because the model
omits Aif ):

lnYif = αs + γ′Xi + ρsSif + esif . (3)

This model includes controls for age, race, and sex in vector Xi (why do these disappear in equation
2?), alongside estimates of differenced equation (2) in column 2:
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Table 6.2
Returns to schooling for Twinsburg twins

Dependent variable

Difference Difference
Log wage in log wage Log wage in log wage

(1) (2) (3) (4)

Years of education .110 .116
(.010) (.011)

Difference in years .062 .108
of education (.020) (.034)

Age .104 .104
(.012) (.012)

Age squared/100 −.106 −.106
(.015) (.015)

Dummy for female −.318 −.316
(.040) (.040)

Dummy for white −.100 −.098
(.068) (.068)

Instrument education No No Yes Yes
with twin report

Sample size 680 340 680 340

Notes: This table reports estimates of the returns to schooling for Twinsburg
twins. Column (1) shows OLS estimates from models estimated in levels. OLS
estimates of models for cross-twin differences appear in column (2). Column (3)
reports 2SLS estimates of a levels regression using sibling reports as instruments for
schooling. Column (4) reports 2SLS estimates using the difference in sibling reports
to instrument the cross-twin difference in schooling. Standard errors appear in
parentheses.

the only reason S1,f − S2,f isn’t zero for everyone is because
schooling is sometimes misreported. Suppose such erroneous
reports are due to random forgetfulness or inattention rather
than something systematic. The coefficient from a regression of
earnings differences on schooling differences that are no more
than random mistakes should be zero since random mistakes
are unrelated to wages. In an intermediate case, where some
but not all of the variation in observed schooling is due to

• The estimate of just over 6% in the differenced equation (reported in column 2 of Table 6.2) is sub-
stantially below the estimate of 11% in column 1. This decline suggests much ability bias in ρs!

2 Measurement Error Messes Things Up

Of 340 twin pairs interviewed for the Ashenfelter and Rouse (1998) study, about half report identical edu-
cational attainment.

• If my brothers and I are so similar, then why should our schooling differ? Good question! Yet, if
most twins really have the same schooling, then a fair number of the non-zero differences in reported
schooling may reflect mistaken reports.

• The problem of mistakes in regressors is known as measurement error. The fact that a few people report
their schooling incorrectly sounds unimportant, yet, when it comes to regression, the consequences of
such measurement error may be major.

• Mismeasured schooling affects (2) more than (1)
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Interlude: Attenuation Bias

Suppose you’ve dreamed of running the regression:

Yi = α+ βS∗i + ei, (4)

but data on S∗i , the regressor of your dreams, are unavailable.

• You see only a mismeasured version, Si:

Si = S∗i + ui, (5)

where ui is the measurement error in Si

• Assume that:

E [ui] = 0 (6)

C (S∗i , ui) = C (ei, ui) = 0 (7)

These assumptions are said to describe “classical measurement error”

• The regression coefficient we’re after, β in (4), is given by:

β =
C (Yi, S

∗
i )

V (S∗i )
. (8)

Alas, we must work with mismeasured regressor, Si, instead of S∗i . This yields slope coefficient:

βb =
C (Yi, Si)

V (Si)

=
C(α+ βS∗i + ei, S

∗
i + ui)

V (Si)

=
C(α+ βS∗i + ei, S

∗
i )

V (Si)
= β

V (S∗i )

V (Si)

• Therefore,
βb = rβ, (9)

where

r =
V (S∗i )

V (Si)
=

V (S∗i )

V (S∗i ) + V (ui)
,

is a number between zero and one

– Fraction r is called the reliability of Si

– Reliability reveals the extent of proportional attenuation bias in βb:

βb
β

= r

– βb is closer to zero than β unless r = 1 (in which case, there’s no measurement error after all)
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Covariates and Differencing Aggravate Attenuation Bias

The addition of covariates to a model with mismeasured regressors exacerbates attenuation bias.

• Suppose the regression of interest is:

Yi = α+ γXi + βS∗i + ei, (10)

where Xi is a control variable, perhaps IQ or a test score. Regression anatomy says:

β =
C(Yi, S̃

∗
i )

V (S̃∗i )
,

where S̃∗i is the residual from a regression of S∗i on Xi

• Replacing S∗i with Si in (10), the coefficient on Si becomes:

βb =
C(Yi, S̃i)

V (S̃i)
,

where S̃i is the residual from a regression of Si on Xi

• Assume measurement error, ui, is “pure noise,” and so uncorrelated with covariate Xi. The pure noise
hypothesis implies:

S̃i = S̃∗i + ui, (11)

where ui and S̃∗i are uncorrelated. We therefore have:

V (S̃i) = V (S̃∗i ) + V (ui).

• Applying the same logic used to establish (9), we get:

βb =
C(Yi, S̃i)

V (S̃i)

=
V (S̃∗i )

V (S̃∗i ) + V (ui)
β = r̃β, (12)

where

r̃ =
V (S̃∗i )

V (S̃∗i ) + V (ui)
<

V (S∗i )

V (S∗i ) + V (ui)
= r.

Covariates reduce the variance of the signal in Si, while leaving the variance of the noise unchanged.
The resulting reduction in signal aggravates attentuation bias.

• Fixed effects are likely to be a worst-case version of this

– To see why, replace (10) with a panel model

Yif = αf + βS∗if + eif , (13)

where αf = αl + λAf is an unobserved fixed-within-family “ability” effect
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– We can eliminate the fixed effect by differencing:

Y1f − Y2f = β
(
S∗1f − S∗2f

)
+ e1f − e2f , (14)

• In this scenario, we might imagine that true schooling is also similar within families, so that changes
are mostly noise. Paralleling (11), we have

Sif = S∗f + uif (15)

In this extreme case, the observed difference in schooling is entirely noise:

S1f − S2f = u1f − u2f (16)

More generally, we expect the differencing transformation to kill more signal than noise.

– In practice, S1f − S2f is probably not all noise

– But it gets worse: if measurement errors is uncorrelated across siblings, then the variance of the
noise in the sibling schooling difference is twice the variance of the noise in levels (compare the
variance of measurement errors in 15 and 16)

• This bodes ill for OLS estimates of equation (2) and provides an alternative explanation (besides ability
bias) for the sharp decline in schooling coefficients as we move from column 1 to column 2 in Table 6.2

3 IV to the Rescue

We’ve seen that with a mismeasured regressor, OLS estimation fails to produce the coefficient we’re after.
But all is not lost.

• Recall from the previous IV notes that the IV estimator of the coefficient on Si in a bivariate regression
of Yi on Si is the sample analog of:

βIV =
C (Yi, Zi)

C (Si, Zi)
, (17)

where the instrumental variable is Zi. In a measurement error story, we use Zi to instrument for
mismeasured Si, an estimation strategy justified by assuming Zi is uncorrelated with both measurement
error and the residual, ei.

• To see what this accomplishes, use (4) and (5) to substitute for Yi and Si in (17):

βIV =
C (Yi, Zi)

C (Si, Zi)
=
C (α+ βS∗i + ei, Zi)

C (S∗i + ui, Zi)

=
βC (S∗i , Zi) + C (ei, Zi)

C (S∗i , Zi) + C (ui, Zi)
.

• Since C (ei, Zi) = C (ui, Zi) = 0 , we have:

βIV = β
C (S∗i , Zi)

C (S∗i , Zi)
= β.

Attenuation bias begone!
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• IV solutions to measurement error problems often exploit multiple measures of the same underlying
construct. If only, we had two measures of schooling! We do: the Twinsburg sample survey asked each
twin to report not only his or her own schooling but also that of their sibling. We therefore have two
measures of schooling for each twin, one self-report and one sibling report.

• Assuming the measurement errors in self- and sibling-reports are uncorrelated (i.e., the mistakes I
make in reporting my own schooling are uncorrelated with mistakes my sibling makes in reporting my
schooling), the difference in sibling reports can be used to instrument the difference in self-reports in
equation (2)

– Translating this notation to equation (2), the variable to be instrumented is Si ≡ (S1f − S2f )

– The instrument is Zi ≡
(
S2
1f − S1

2f

)
where Sj

if is sibling j’s report of sibling i’s schooling

• The resulting IV estimates, reported in cols 3-4 in Table 6.2, suggest the decline in returns
to schooling from columns 1 to 2 is due to ME rather than OVB.

And so the curtain falls on our story of ability bias.
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